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ABSTRACT
We propose a novel method to obtain the orientation dis-
tribution function (ODF) from diffusion weighted signals
measured using the Q-ball imaging methodology. Past work
has involved using the spherical harmonics or radial basis
functions to represent the ODF. In this work, we propose
a novel function that has the ability to compactly represent
signals measured using high angular resolution diffusion
imaging (HARDI). Further, the closed form solution for com-
puting the corresponding ODF turns out to be the Watson
distribution used in directional statistics. As a special case,
we formulate a directional function for which the ODF is the
von Mises-Fisher (vMF) distribution. Experiments on some
synthetic data show the robustness of the proposed method to
represent ODF’s in the presence of noise. We also compare
the method with ODF estimation using spherical harmonics
and show some of its advantages.

Index Terms— Orientation distribution function (ODF),
Directional functions, HARDI, Q-Ball Imaging

1. INTRODUCTION

High angular resolution diffusion imaging (HARDI) has be-
come an important tool in the analysis of brain matter. It es-
sentially allows to compute the probabilities for the displace-
ment of water molecules in tissue bers. While diffusion ten-
sor imaging (DTI) also allows to capture similar characteris-
tics, it has a signi cant limitation, in that the technique can
only resolve a single ber direction within each voxel. This
shortcoming is signi cant since human cerebral white matter
possesses considerable intravoxel structure at the millimeter
resolution typical of MRI. Thus, the single tensor model is
inadequate for resolving neural architecture in regions with
complex ber patterns. Further, in regions of ber crossings,
the interpretation of tensor anisotropy becomes complicated
[1]. An alternative technique, called q-space imaging (QSI)
was proposed [2, 3] which sampled the diffusion signal on
a 3D Cartesian lattice. This method addressed the problems
plaguing DTI, but required unacceptably long time durations
to perform the sampling.

To alleviate these problems, a different method was pro-
posed based on sampling on a spherical shell in diffusion
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wavevector space. This spherical sampling approach is re-
ferred to as HARDI in the literature [2, 4]. In the seminal
work by Tuch [1], the author proposed a novel way to com-
pute the orientation distribution function (ODF) by using the
Funk-Radon transform (special case of spherical radon trans-
form). The reconstruction of ODF from the measured HARDI
signals (de ned on the sphere) is referred to as Q-ball imaging
in popular literature in the medical community. The ODF in a
particular direction is computed by integrating the measured
signal along the corresponding equator [1].

1.1. Related Work

Most of the current research is now focused on ef cient and
accurate computation of the ODF pro les from the measured
signal. Apart from Tuch [1], numerous methods have been
proposed. Speci cally, Jansons et.al. [5] solves the problem
in the Fourier domain using a maximum entropy parametriza-
tion, although their numerical approximations are sensitive to
local minima and are not in general guaranteed to converge
to global minima. Peled et.al. [6] use the coordinate frame
of a single tensor t to estimate 2 tensors residing in the re-
sulting plane. It is not however known if the method can be
extended to estimate more than 2 tensors. Recent work by
Bergmann et.al.[7] provides a way to estimate the ODF pro-
le by weighting each signal inversely with the distance from

the equator. They also use a binary integer programming ap-
proach to estimate the different tensors from the computed
ODF. Recently, spherical harmonics were used in [8, 9, 10]
to estimate the ODF. This method works by rst computing
the coef cients of the spherical harmonic basis of order l that
best t the measured signal and subsequent modi cation of
the coef cients to obtain the desired ODF. In general, it re-
quires (l+1)(l+2)

2 spherical harmonic coef cients to represent
an ODF.

1.2. Background

In diffusion weighted imaging, the image contrast is related to
the diffusion of water molecules, where the measurements can
be made sensitive to water diffusion along n distinct spatial
directions u1, ...,un ∈ S

2 ⊂ R
3 on the sphere, such that a

signal S1, ..., Sn is obtained for each direction. The model
developed in [1, 5] for multiple bers relates the signals with
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the gradient direction in the following manner:

Si = S0

m∑
j=1

wj exp(−buT
i Djui) (1)

where wj are non-negative weights summing upto 1, b is an
acquisition speci c constant, S0 is signal intensity without
diffusion sensitization and Dj is the jth diffusion tensor. For
synthetic experiments, we will use this model to obtain the
signal values Si and use the analytical formula given in [1] to
obtain the corresponding ODF pro les.

2. DIRECTIONAL FUNCTION

For a single tensor model, there are three shapes of the dif-
fusion tensor that any directional function should reasonably
approximate, i.e., ellipsoidal, planar and spherical. Any dif-
fusion tensor D can be decomposed as D = UΛUT , where
U is a rotation matrix and Λ is a diagonal matrix with eigen-
values {λ1, λ2, λ3}. The eigenvalues determine the shape of
the tensor, for example, if λ1 > λ2 > λ3, the shape is el-
lipsoidal with the major axis of the ellipsoid pointing to the
eigenvector corresponding to λ1. This is one of the most com-
monly occurring cases and very useful in tractography and
segmentation. Intuitively, this shape represents strong dif-
fusion of water molecules along a particular direction. For
λ1 = λ2 � λ3, the shape is planar indicating diffusion along
orthogonal directions and λ1 = λ2 = λ3, the diffusion is
isotropic (spherical).

For principal diffusion along a particular direction m
(the ellipsoidal case), one can approximate the exponent
in the model (1) as −buT Du ≈ −bλ1uT (mmT )u =
−bλ1(cos(θ))2, where θ = cos−1(mT u). Thus, for a single
tensor, the model (1) can be approximated as

Si = S0 exp(−bλ1 cos2 θ) = S0 exp(−bλ1) exp(bλ1 sin2 θ)

= S̃0 exp(bλ1 sin2 θ); θ = cos−1(uT
i m).

We thus propose to model the measured signal using

Si = A exp(k sin2 θ); θ = cos−1(uT
i m), (2)

where A is a normalizing constant, m is the principal direc-
tion and k is the concentration parameter that determines how
anisotropic the diffusion is. In our subsequent discussions we
will ignore the normalizing constant A, since one can always
normalize the signal using the min-max normalization [1] so
that the range of S lies between 0 and 1. This directional
function (2) can also represent other types of diffusion that a
single tensor is capable of representing. Thus, near isotropic
diffusion is obtained by setting k → 0, while ellipsoidal dif-
fusion (as discussed above) is given by k > 0. Planar diffu-
sion can be obtained by setting k < 0. Ideally, if one models
the diffusion with an ODF, then a planar tensor shape can be
better represented with a linear combination of 2 directional

Fig. 1. The surface Siui for k = 5, 1e−10,−5 respectively (left to
right).

functions orthogonal to each other. Figure 1 shows the signal
surface using the proposed function for 3 different values of
k.

Thus, the proposed function can be used as an alternative
to the usual tensor representation in DTI images. In particu-
lar, note that a 3D tensor requires 6 parameters to describe it,
while the proposed function requires only 3 free parameters
(2 for representing the direction in spherical coordinates and
1 for the concentration parameter k). The value of k can be
used to compute important measures of clinical relevance like
fractional anisotropy (FA). One such formula is

FA = 1 − exp(− | k |).
Further, one can also perform interpolation and compute dis-
tances between 2 directional functions in a straightforward
manner. However, in the interest of space, we will not discuss
it in this work.

2.1. The Orientation Distribution Function

The ODF of the function (2) can be computed in a straight-
forward manner. As given in [1], the ODF is obtained by in-
tegrating over the radial component of the measured signal S.
Thus, the ODF at a direction ui is obtained by integrating the
signal values along the corresponding equator. From simple
trigonometry, it is clear that, given a diffusion direction m,
the function (2) represents an “equatorial girdle” along the
corresponding equator (see Figure 1) due to the action of the
sine function. Thus, the corresponding ODF can be directly
obtained by replacing the sine function with the cosine func-
tion noting that there is a phase difference of π/2 between
them. Thus, the ODF is given by

Oi = B exp(k cos2 θ); θ = cos−1(uT
i m), (3)

where B is a normalizing constant which we will ignore in
this work. Figure 2 shows the measured signal and the corre-
sponding ODF for a diffusion direction m. Notice the planar
shape of the ODF corresponding to negative k value.

Thus, once the principal diffusion direction m is known,
the ODF can be analytically computed using (3). This func-
tion has been used in the eld of directional statistics and is
known as the Watson density function [11]. We should how-
ever note that, this the rst time it has been applied in medical
imaging and a mathematical justi cation has been given for
its use.
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Fig. 2. The signal surface (blue) and the corresponding ODF (red)
for k = 5, 0.0001,−5 respectively (left to right).

Another function that is commonly used to represent di-
rectional data is the von Mises-Fisher (vMF) distribution [11,
12]. In particular, the authors in [12] have used a mixture
of vMF’s to represent multi- ber orientations. They however
have not dealt with the topic of estimation of the ODF from
the measured signal. Instead, it is assumed that the ODF has
already been computed using any known method and then an
EM algorithm is used to t the mixture of vMF’s to the ODF.
Just as in the case of Watson density, one can use the fol-
lowing function so that the ODF can be represented by the
vMF distribution function. If one assumes that the signal
pro le can be represented by: Si = A exp(k sin θ); θ =
cos−1(uT

i m), then, the corresponding ODF can be computed
using

Vi = B exp(k cos θ) = B exp(kmT ui). (4)

Apart from the power of sine and cosine in the exponent,
there are other differences between these 2 functions (Wat-
son and vMF). The vMF function cannot represent “equato-
rial girdles” or planar shapes. Thus, negative values of k do
not provide any additional information than positive values,
implying k ∈ R+. Also, in the case of vMF, one needs to ex-
plicitly compute the antipodally symmetric diffusion surface
for display purposes. For all other cases, both these functions
behave in a similar fashion.

3. EXPERIMENTS WITH 1 TENSOR MODEL

In this section, using some synthetic experiments for a 1 ten-
sor model, we compare the representation ability of the di-
rectional function (3) with that of spherical harmonics of a
certain order l. In particular, for spherical harmonics, we will
use the method given in [8] with the regularizing parameter to
compute an ODF. The signals were generated using the model
(1) and the true ODF was obtained using the formula given
in [1]. We compute the MSE (mean squared error) given by(
‖S−Ŝ‖
‖S‖

)2

, where S is the true signal and Ŝ is the estimated

signal. Rician noise was added to obtain a signal with SNR =
10 dB. 81 gradient directions were used.

We rst nd the best t of the function (2) to the measured
signal S to obtain the parameter values k,m. The correspond-
ing ODF is then given by the Watson function. One can use
any method [13, 11] to nd the parameters k,m. In this work

Fig. 3. The true ODF (blue) and the estimated ODF (red). Left:
using Watson function, Right: using spherical harmonics of order 8.

however, we have done a brute force search to nd the param-
eters that give the least error ‖ S−Ŝ ‖. For the planar case, we
used the following values to generate the signal (1): b = 1000
and eigenvalues of 1e−6{4000, 4000, 1000}. 1000 samples
were generated with random orientation. The MSE between
the true signal and estimated signal was 0.1183, while MSE
between the corresponding ODF was 0.0242. The MSE for
the estimated ODF using spherical harmonics of order 8 was
0.0034.

For the ellipsoidal case, the signal was generated with
eigenvalues of 1e−6{1700, 300, 300} with the same b-value
as earlier. For 1000 random samples, MSE for signal estima-
tion was 0.0492, for the corresponding ODF was 0.0733 and
for estimation using spherical harmonics of order 8 (SH8) was
0.1929. Thus, for the planar case, the spherical harmonics
performed better while for ellipsoidal case the Watson func-
tion had lower error. Figure 3 shows the ODF estimated using
the Watson function and spherical harmonics. With the same
set of parameters, errors (for 1000 random samples) using the
vMF distribution were: MSE (signal) = 0.0495, MSE(ODF)
= 0.0765, MSE(SH8) = 0.1902.

4. MIXTURE MODELS

In order to represent multiple ber orientations, a mixture
model can be used. Thus, the measured signal can approx-
imated using a mixture of m directional functions:

Si =
m∑

j=1

cj exp(kj sin2 θj); θj = cos−1(mT
j ui).

By linearity, the corresponding ODF is given by

Oi =
m∑

j=1

cj exp(kj cos2 θj). (5)

Thus, to represent multiple bers, it requires 4 parameters per
ber direction. Estimation of the mixture parameters is itself

a topic of active research. One can use the EM-style algo-
rithm given in [13] to faithfully represent the measured sig-
nal S. The computation of the corresponding ODF is then
straightforward. The same procedure can be applied for the
vMF distribution function as well. Figure 4 shows the signal
and the corresponding ODF computed using the Watson func-
tion for 2 ber orientations. Figure 5 shows the ODF obtained
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Fig. 4. The signal (blue) and the estimated ODF (red) for 2 ber
orientations.

Fig. 5. ODF estimation on real data set with 55 gradient directions.

using the Watson function on a real data set with 55 gradient
directions.

As discussed earlier, with the proposed directional func-
tions only 2m parameters are required for representing m
ber orientations quite accurately. This is in contrast to spher-

ical harmonics, where an order 8 expansion requires 45 coef-
cients. However, the computation of these coef cients is

quite fast [8] and robust to noise even for sparse sampling of
the sphere. This latter fact can be utilized for preprocessing
of noisy data and the directional functions can then be tted
to the smoothed data using any method (like, [13]) to obtain a
very compact representation of the ODF. Further, for the vMF
distributions, the authors in [12] have described algorithms
for interpolating and computing geodesic distances between
2 ODF’s. Since the parameter space for the Watson distribu-
tion and the vMF distribution is the same, one can directly
use the formulation given therein. Another important feature
that the present work allows is to perform interpolation on the
signal data itself based on the Riemannian formulation given
in [12].

5. CONCLUSION

We have introduced a novel directional function for which
a closed form expression for computing the corresponding
ODF exists. The resulting ODF’s, known in the literature
as Watson distribution and von Mises-Fisher distribution,
provide a representation that requires fewer parameters than
spherical harmonics. In particular, the Watson distribution
can be used as an alternative representation for a diffusion

tensor but with fewer parameters. Mixture models of these
functions can be used to ef ciently represent multi- ber ori-
entations. Future work entails coming up with a fast and
robust algorithm to determine the parameters of the mixture
model.
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